\qquad
\qquad

Usin曷 the Combined Gus 四aw

If a balloon is pulled over the neck of a flask, and the setup is placed on a hot plate, the balloon blows up as it heats up. This happens even though no additional air can get into the balloon. As the air heats up, it expands. The air can be squeezed back into a smaller space by increasing the pressure on it. This is what causes the diver in a Cartesian diver to sink when pressure is put on its container. The relationship between the temperature, pressure, and volume of a gas is known as the combined gas law.

$$
\text { THE LAW } \quad \frac{\mathbf{P}_{1} \mathbf{V}_{1}}{\mathbf{T}_{1}}=\frac{\mathbf{P}_{2} \mathbf{V}_{2}}{\mathbf{T}_{2}}
$$

Where:
$\mathrm{P}_{1}=$ initial pressure $\quad \mathrm{P}_{2}=$ final pressure
$\mathrm{V}_{1}=$ initial volume $\quad \mathrm{V}_{2}=$ final volume
$\mathrm{T}_{1}=$ initial temperature (K) $\quad \mathrm{T}_{2}=$ final temperature (K)

The equation has six variables. Generally, five variables must be provided in order to solve for the sixth. If either temperature, pressure, or volume is constant, they cancel out, making an equation of four variables.

Sample Problem

A gas with a volume of $250 . \mathrm{mL}$ at $35^{\circ} \mathrm{C}$ and 101.3 kPa is heated to $57^{\circ} \mathrm{C}$ and the pressure is increased to 151.3 kPa . What is its new volume?

- $T_{1}=35+273=308 K ; T_{2}=57+273=330 K$
- $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
- $V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=\frac{(101.3 \mathrm{kPa})(250 \mathrm{~mL})(330 \mathrm{~K})}{(308 \mathrm{~K})(151.3 \mathrm{kPa})}=179 \mathrm{~mL}$

Fill in the blanks in the table below by using the combined gas law to find the unknown variable in each row.

	Initial			Final		
	volume	pressure	temperature	volume	pressure	temperature
1.	80.0 mL	96 kPa	$27^{\circ} \mathrm{C}$		99.0 kPa	$0.0{ }^{\circ} \mathrm{C}$
2.	36 mL	SP ${ }^{*}$	ST ${ }^{*}$		96.6 kPa	$35.0^{\circ} \mathrm{C}$
3.	2.0 L	95.3 kPa	$-45^{\circ} \mathrm{C}$		SP ${ }^{*}$	ST*
4.	4.5 L	1.035 atm	375 K		1.100 atm	350. K
5.		0.980 atm	$30.0{ }^{\circ} \mathrm{C}$	185 mL	0.900 atm	$28.0{ }^{\circ} \mathrm{C}$
6.	16.5 mL	107.3 kPa	$26.5{ }^{\circ} \mathrm{C}$	18.0 mL	104.4 kPa	
7.	14.8 mL	1.123 atm	$75.5{ }^{\circ} \mathrm{C}$	16.5 mL		$70.2{ }^{\circ} \mathrm{C}$
8.	5.322 L		$100.0^{\circ} \mathrm{C}$	4.895 L	104.2 kPa	$98.5{ }^{\circ} \mathrm{C}$
9.	1.00 L	SP	ST		SP	27.3 K
10.	2.50 L	SP	ST		111.4 kPa	$87^{\circ} \mathrm{C}$

${ }^{*} \mathrm{SP}=$ Standard Pressure $(101.3 \mathrm{kPa}$ or 1.0 atm$)$
ST $=$ Standard Temperature $\left(0^{\circ} \mathrm{C}\right.$ or 273 K$)$

