Name: \qquad Date: \qquad

Student Exploration: Boyle's Law and Charles' Law

Vocabulary: absolute zero, Boyle's law, Charles' law, Gay-Lussac's law, Kelvin scale, pressure

Prior Knowledge Question (Do this BEFORE using the Gizmo.)
A small helium tank measures about two feet $(60 \mathrm{~cm})$ high. Yet it can fill over 50 balloons! How can such a small tank contain enough helium to fill so many balloons?
\qquad
\qquad
\qquad

Gizmo Warm-up

The Boyle's Law and Charles' Law Gizmo shows a container of gas. In the container, the small purple spheres represent molecules.

1. Observe the particles. Are they all moving at the same speed? \qquad

2. How do the particles interact with the walls and lid of the container? \qquad

These interactions contribute to the pressure on the walls of the container. Pressure is defined as force per unit area. The SI units of pressure are newtons per square meter ($\mathrm{N} / \mathrm{m}^{2}$), or pascals (Pa).
3. Slowly drag the temperature ($\boldsymbol{T})$ slider back and forth. (Note: In this Gizmo, the Kelvin scale is used to measure temperature. On the Kelvin scale, 0 degrees is absolute zero, the coldest possible temperature. Absolute zero is equal to $-273.15^{\circ} \mathrm{C}$ or $-459.67{ }^{\circ} \mathrm{F}$)
A. How does the change in temperature affect the speed of the molecules? \qquad
\qquad
B. How does the change in temperature affect the volume of the container? \qquad

Activity A:	Get the Gizmo ready:	
Boyle's law	- Set the temperature (\boldsymbol{T}) to 300 K.	

Question: How does pressure affect the volume of a gas?

1. Form hypothesis: In this experiment, you will pile weights on the lid of the container of gas. What do you think will happen as more weight is added to the lid?
2. Notice: Look at the DESCRIPTION pane. What is the mass of the lid? \qquad How much pressure does the lid exert on the gas? \qquad
3. Collect data: With the temperature held constant at 300 K , use the Select mass slider to place weights on the lid. Record the pressure and volume of the gas for each added mass.

Added mass on the lid	Total mass (lid + added mass)	Pressure* *	Volume
0 kg	10 kg		
10 kg	20 kg		
20 kg	30 kg		
30 kg	40 kg		

*This model does not include atmospheric pressure, which is $101,325 \mathrm{~N} / \mathrm{m}^{2}$.
4. Analyze: As the pressure increases at constant temperature, what happens to the volume of the gas? \qquad
This relationship is called Boyle's law.
5. Calculate: Compare the pressure and volume values in your data table.
A. How did doubling the pressure change the gas volume? \qquad
B. How did tripling the pressure change the gas volume? \qquad
C. How did quadrupling the pressure change the gas volume? \qquad
(Activity A continued on next page)

Activity A (continued from previous page)

6. Predict: If the added mass on the lid was 50 kg , a total mass of 60 kg would exert pressure on the gas inside the container. What will be the volume of the gas? \qquad
7. Test: Test your prediction using the Gizmo. What is the volume of the gas? \qquad
Was your prediction correct? \qquad
8. Create a graph: On the GRAPH tab, select V vs. P. Set \boldsymbol{m} to 0 kg , and click Record to plot a point on the graph. Plot a point for each possible mass to create a graph showing the relationship between pressure and volume.

When your graph is completed, click the camera (O) icon to take a snapshot. Right-click the image, and click Copy Image. Paste the image into a blank word-processing document, and label the graph "Volume vs. Pressure."
A. What is the shape of the graph?
B. How does this graph illustrate Boyle's law? \qquad
\qquad
C. How do you think the graph might change if the temperature was held constant at a higher temperature, say 400 K ? \qquad
\qquad
9. Apply: Think about a small helium tank that can fill 50 balloons. What must be true about the helium in the tank compared to the helium in the balloons?
\qquad
\qquad
\qquad
\qquad

Activity B: Charles' law	Get the Gizmo ready: - On the SIMULATION pane, set \boldsymbol{T} to 100 K and \boldsymbol{m} to 0 kg.	

Question: How does temperature affect the volume of a gas?

1. Form hypothesis: How do you think the volume of a gas will change as the temperature rises and falls? \qquad
2. Collect data: Without changing the mass on the lid, record the pressure and volume of the gas at each of the given temperatures.

Temperature	Pressure *	Volume
100 K		
200 K		
300 K		
400 K		
500 K		

*This model does not include atmospheric pressure, which is $101,325 \mathrm{~N} / \mathrm{m}^{2}$.
3. Analyze: As the temperature increases at constant pressure, what happens to the volume of the gas? \qquad
This relationship is called Charles' law.
4. Explain: Based on the motions of the gas molecules, why do you think the volume changed as it did when the temperature was increased? \qquad
\qquad
\qquad
5. Think about it: Why do you think the pressure was the same in each test? \qquad
\qquad

(Activity B continued on next page)

Activity B (continued from previous page)

6. Calculate: Compare the pressure and volume values in your data table.
A. How did doubling the temperature affect the gas volume? \qquad
B. How did tripling the temperature affect the gas volume?
C. How did quadrupling the temperature affect the gas volume? \qquad
7. Predict: Suppose the temperature was 50 K . What will be the volume of the gas? \qquad
8. Test: Test your prediction using the Gizmo. What is the volume of the gas? \qquad Was your prediction correct? \qquad
9. Create a graph: On the GRAPH tab, select V vs. \mathbf{T}. Set \boldsymbol{T} to 50 K , and click Record to plot a point on the graph. Plot a point every 50 degrees to create a graph showing the relationship between temperature and volume.

When your graph is complete, click the camera icon to take a snapshot. Paste the image into your document, and label the graph "Volume vs. Temperature."
A. What is the shape of the graph? \qquad
B. How does this graph illustrate Charles' law? \qquad
\qquad
10. Apply: Based on what you learned, what would happen to a balloon placed in the freezer?

What would happen to a balloon placed in a warm oven? (Assume it doesn't pop.) \qquad
\qquad
11. Think and discuss: Consider temperature, pressure, and volume. How does the mathematical relationship in Boyle's law compare to that in Charles' law?

Activity C: Gay-Lussac's Law	Get the Gizmo ready: - On the SIMULATION pane, set \boldsymbol{T} to 100 K and \boldsymbol{m} to 0 kg.	

Question: How does temperature affect the pressure of a gas when volume is constant?

1. Form hypothesis: If the volume of a gas is held constant, how do you think the pressure will change as temperature increases? \qquad
2. Collect data: Record the volume and pressure when $\boldsymbol{T}=100 \mathrm{~K}$ and $\boldsymbol{m}=0 \mathrm{~kg}$. Then, change \boldsymbol{T} to 200 K . Adjust the \boldsymbol{m} slider until the volume is the same as it was when \boldsymbol{T} was 100 K . Record the volume and pressure. Then, repeat for the other temperatures.

Temperature	Volume	Pressure	$\frac{\text { Pressure }}{\text { Temperature }}$
100 K			
200 K			
300 K			
400 K			
500 K			

3. Analyze: Divide the pressure by the temperature to fill in the last column of the table.
A. When the volume is held constant, how does the pressure change as temperature increases? \qquad
B. What do you notice about the ratio of pressure to temperature, when volume is constant? \qquad
Gay-Lussac's law states that, at constant volume, the ratio of pressure to temperature is constant. As temperature increases, pressure increases as well.
4. Explain: Based on the motions of the gas molecules, why do you think the pressure changed as it did when the temperature was increased? \qquad
(Activity C continued on next page)

Activity C (continued from previous page)

5. Calculate: Compare the pressure and temperature values in your data table.
A. At constant volume, how did doubling the temperature affect the pressure? \qquad
\qquad
B. How did tripling the temperature affect the pressure? \qquad
C. How did quadrupling the temperature affect the gas volume? \qquad
6. Create a graph: Use your data from the previous page to create a graph of temperature vs. pressure on the blank grid to the right, assuming a constant volume of $0.85 \mathrm{~m}^{3}$. Draw a line or curve to connect the points on the graph.

What is true about the line connecting the points? \qquad
\qquad

7. Apply: Based on what you learned, what do you think would happen if you placed a sealed container of gas into a fire? \qquad
\qquad
8. Challenge: Combine Boyle's law, Charles' law, and Gay-Lussac's law into a single proportional relationship between pressure (P), volume (V), and temperature (T). Use the symbol " \propto " to represent "is proportional to."

Explain your reasoning. \qquad
\qquad
\qquad
\qquad
\qquad

